Model Checking

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

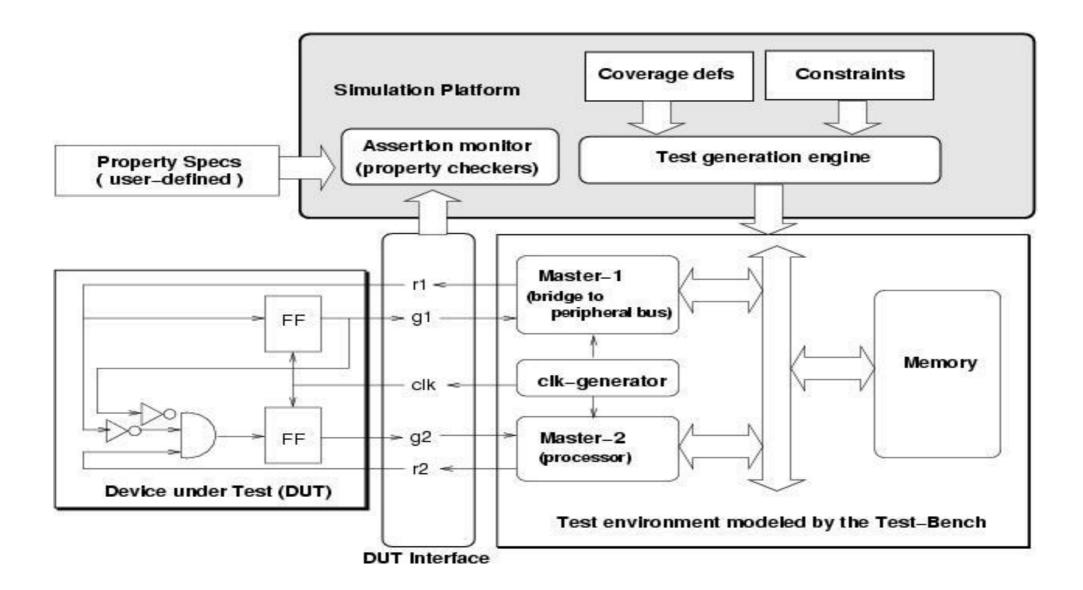
FNAE, FASc, A K Singh Distinguished Professor in Al, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iitkgp.ac.in Web: http://cse.iitkgp.ac.in/~pallab

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Formal Property Verification

- What is formal property verification?
 - Verification of formal properties?
 - Formal methods for property verification?
- Both are important requirements
- Broad Classification
 - Dynamic property verification (DPV)
 - Static/Formal property verification (FPV)

Dynamic Property Verification (DPV)



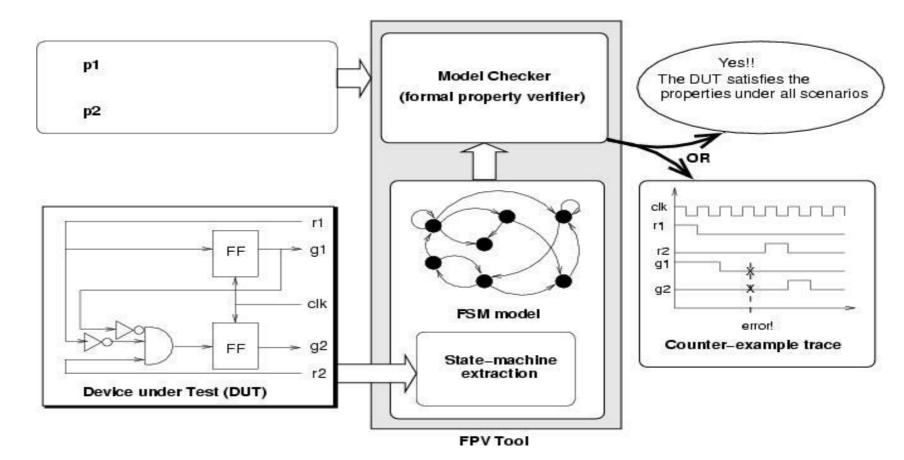
Formal Property Verification (FPV)

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): *LTL, CTL*

Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA),

Property Specification Language (PSL)



Formal Property Verification

The formal method is called "Model Checking"

- The algorithm has two inputs
 - A finite state transition system (FSM) representing the implementation
 - A formal property representing the specification
- The algorithm checks whether the FSM "models" the property
 - This is an exhaustive search of the FSM to see whether it has any path / state that refutes the property.

Transition Systems and Kripke Structures

A *transition system* TS is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\bullet \rightarrow \subseteq S \times Act \times S \text{ is a transition relation}$
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L : S \rightarrow 2^{AP}$ is a labeling function
- S and Act are either finite or countably infinite

A Kripke Structure TS is a tuple $(S, \rightarrow, I, AP, L)$ where

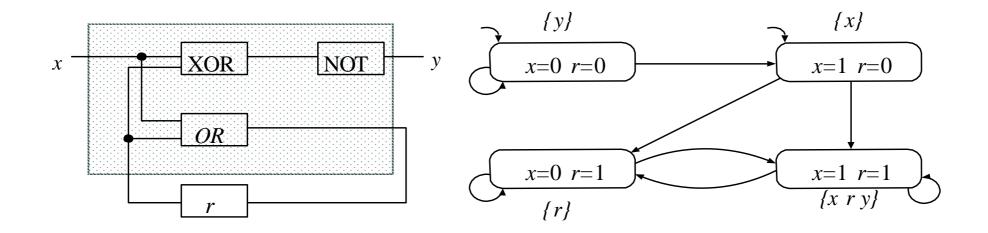
- S is a set of states (inputs are part of the state)
- $\bullet \rightarrow \subseteq S \times S \text{ is a transition relation}$
- $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L : S \rightarrow 2^{AP}$ is a labeling function

 \rightarrow is a total relation, that is, every state has a next state (could be itself)

S is finite

In this discussion we shall use the notion of Kripke structures

Modeling Sequential Circuits as Kripke Structures



A simple hardware circuit with Input variable *x*, Output variable *y*, and Register *r*

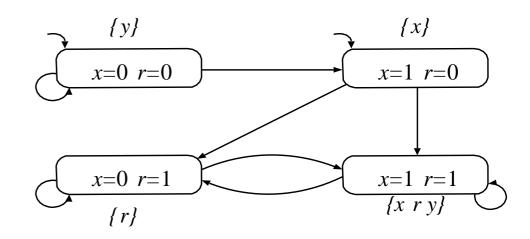
Output function $\neg(x \oplus r)$ and register evaluation function $x \lor r$

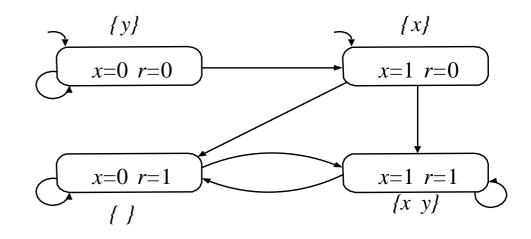
Atomic Propositions

Consider two possible state-labelings:

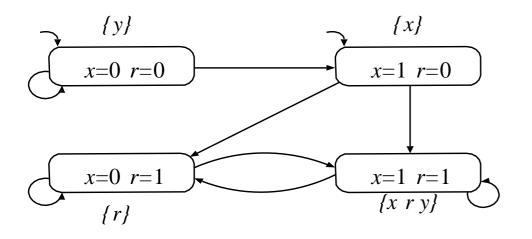
- Let *AP* = { *x*, *y*, *r* }
 - $-L((x = 0, r = 1)) = \{r\} \text{ and } L((x = 1, r = 1)) = \{x, r, y\}$
 - $-L((x = 0, r = 0)) = \{y\}$ and $L((x = 1, r = 0)) = \{x\}$
 - property e.g., "once the register is one, it remains one"

 $-L((x = 0, r = 1)) = \emptyset \text{ and } L((x = 1, r = 1)) = \{x, y\}$ -L((x = 0, r = 0)) = { y } and L((x = 1, r = 0)) = { x } - property e.g., "the output bit y is set infinitely often"





Automata over Infinite Words



Runs of the transition system:

 $\Sigma = \{ \{ \}, \{x\}, \{y\}, \{r\}, \{x y\}, \{x r\}, \{r y\}, \{x r y\} \} = 2^{AP}$

Each run of the system belongs to $(2^{AP})^{\omega}$ that is, the set of infinite words over Σ

 $\operatorname{Runs}(\operatorname{TS}) \subseteq (2^{\operatorname{AP}})^{\omega}$

- A run of this state machine is an infinite sequence of states.
 - If we observe only the state labels, then each state is viewed as a combination of labels (note that two states can have same labels)

Runs of the formal property:

Linear time properties are also defined over $\Sigma = 2^{AP}$

Each run in $(2^{AP})^{\omega}$ either satisfies a given formal property ϕ or is a counterexample

 $\mathsf{Runs}(\phi) \subseteq (2^{\mathsf{AP}})^{\omega}$

 $TS \models \phi$ (read as TS models ϕ) iff Runs(TS) \subseteq Runs(ϕ)

Model Checking Linear Time Properties

- Linear Temporal Logic (LTL) captures an expressive subset of
 Omega Regular Languages
 - SVA is derived from LTL
- Given a LTL property, φ, to determine whether TS ⊨ φ we do the following:
 - Since TS $\vDash \phi$ iff Runs(TS) \subseteq Runs(ϕ), it follows that Runs(TS) $\cap [(2^{AP})^{\omega} - Runs(\phi)] = \emptyset$
 - We create an automaton, $B_{-\phi}$, which accepts runs satisfying $-\phi$, that is, runs in $(2^{AP})^{\omega}$ Runs(ϕ)
 - We compute the product of TS with $B_{-\phi}$ and check whether the product has any accepting run.
 - If not then TS $|= \varphi$.
 - Otherwise, the accepting run is a counter-example trace.

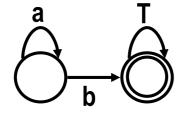
(2^{ΑΡ}) ^ω			
Runs(φ)			
Runs(TS)			

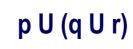
Nondeterministic Büchi automata

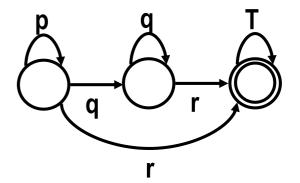
- NFA (and DFA) are incapable of accepting infinite words
- A nondeterministic Büchi automaton (NBA) A is a tuple (Q, Σ , δ , Q₀, F) where:
 - Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
 - $\boldsymbol{\Sigma}$ is an alphabet
 - $\delta \colon Q \times \Sigma \ \to 2^Q$ is a transition function
 - $F \subseteq Q$ is a set of accept (or: final) states
- NBAs are structurally similar to NFAs.
- But they have separate acceptance criteria
 - An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input
 - A Büchi automaton accepts its infinite length input if at least one of the accept states is visited infinitely often

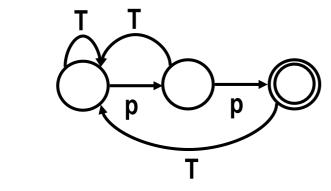
Linear Time Properties can be converted to NBA

a U b







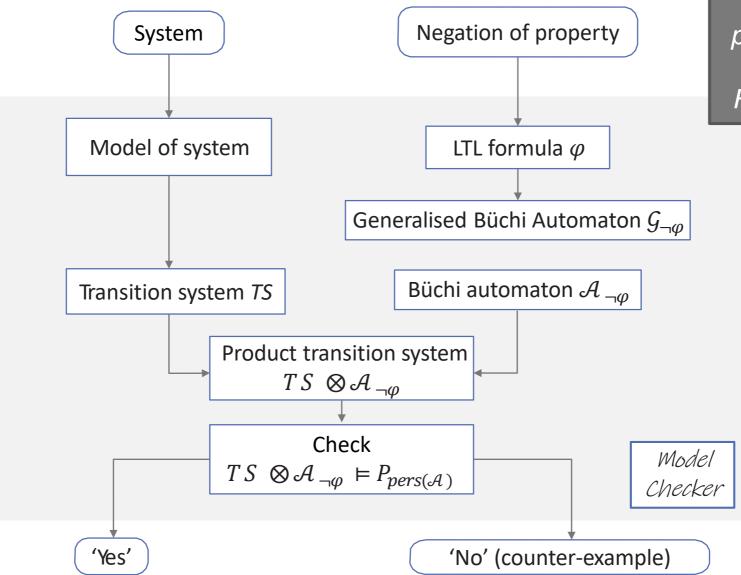


Here the Büchi acceptance criteria ensures that $p \land Xp$ is satisfied infinitely often.

DFAs and NFAs are equally powerful, and therefore many algorithms convert a NFA to a DFA before product construction.

Non-deterministic Büchi automata are strictly more powerful than deterministic Büchi automata. Therefore we do not attempt to convert a NBA to a DBA.

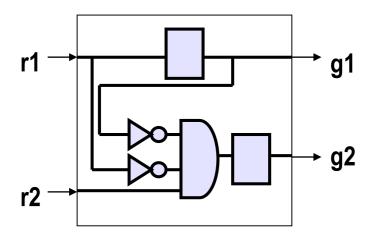
LTL Model Checking – An Overview



A persistence property for an NBA *A* is FG ("no final state")

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Our running example: Priority Arbiter



Design-under-test (DUT)

Specification: Formal Property

• One of the grant lines is always asserted

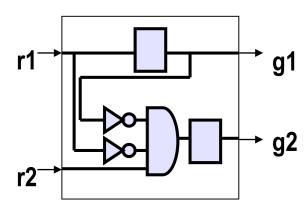
In Linear Temporal Logic: G(g1 v g2)

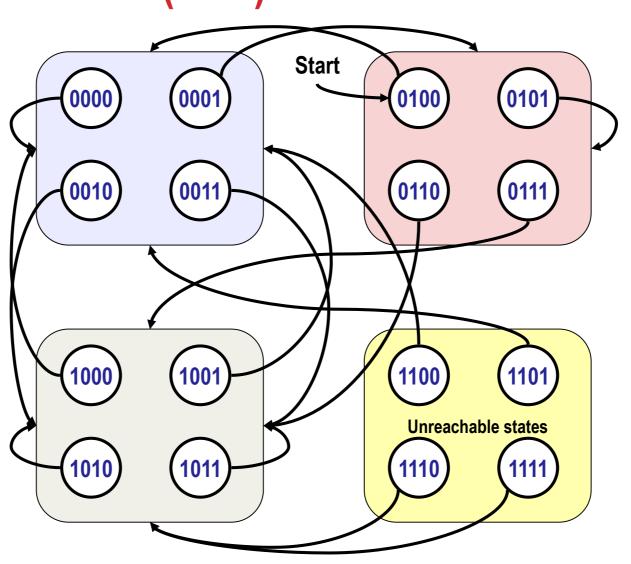
We wish to check whether: $TS(DUT) \models G(g1 \lor g2)$

The Kripke Structure: TS(DUT)

 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$

Initial State: r₁=0, r₂=0, g₁=0, g₂=1





PS g ₁ g ₂	I/P r ₁ r ₂	NS g' ₁ g' ₂	Next I/P
00	00	00	XX
00	01	01	хх
00	10	10	ХХ
00	11	10	хх
01	00	00	ХХ
01	01	01	хх
01	10	10	хх
01	11	10	хх
10	00	00	ХХ
10	01	00	ХХ
10	10	10	ХХ
10	11	10	ХХ
11	00	00	ХХ
11	01	00	хх
11	10	10	хх
11	11	10	ХХ

This is only for demonstration !!

We will never create this explicitly, but encode it in SAT / BDD

Now we handle the specification

Our property: $\phi = G[g_1 \lor g_2]$

• Either of the grant lines is always active

We will create the automaton, \mathcal{A} , for $\neg \phi$

- $\neg \phi = F[\neg g_1 \land \neg g_2]$
- Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

Intuitive steps towards creating the automaton for the property

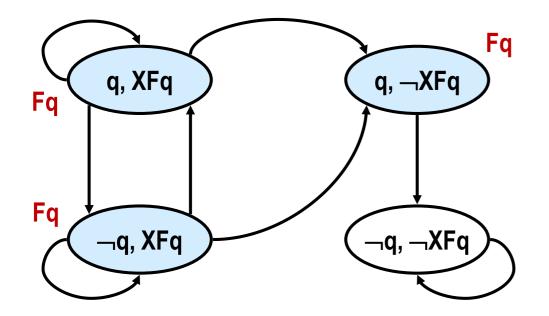
- Let us consider our property $F(\neg g_1 \land \neg g_2)$ // Eventually q is true
- Using **q** as a short form for $\neg g_1 \land \neg g_2$ we can rewrite it as:

 $Fq = q \lor XFq$ *|| Either q is true now or Fq is true in the next state*

- Therefore we can classify the states in a run into the following types:
 - States that satisfy q
 - States that do not satisfy q but satisfy XFq
 - States that do not satisfy q and do not satisfy XFq
 - The first two types are labeled by Fq

The automaton for our property

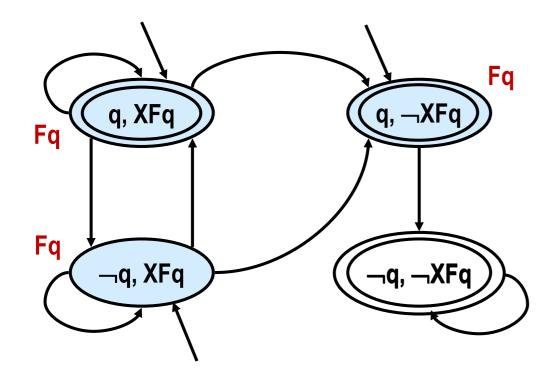
Our property: Fq where $q = \neg g_1 \land \neg g_2$



- States that satisfy q and states that do not satisfy q but satisfy XFq are labeled with Fq
- We add the following edges:
 - From states satisfying XFq to states labeled with Fq
 - From states satisfying –XFq to states satisfying –q
- But the self loop in the state labeled {-q, XFq} is problematic
 - It allows the satisfaction of q to be postponed forever, in which case Fq does not hold

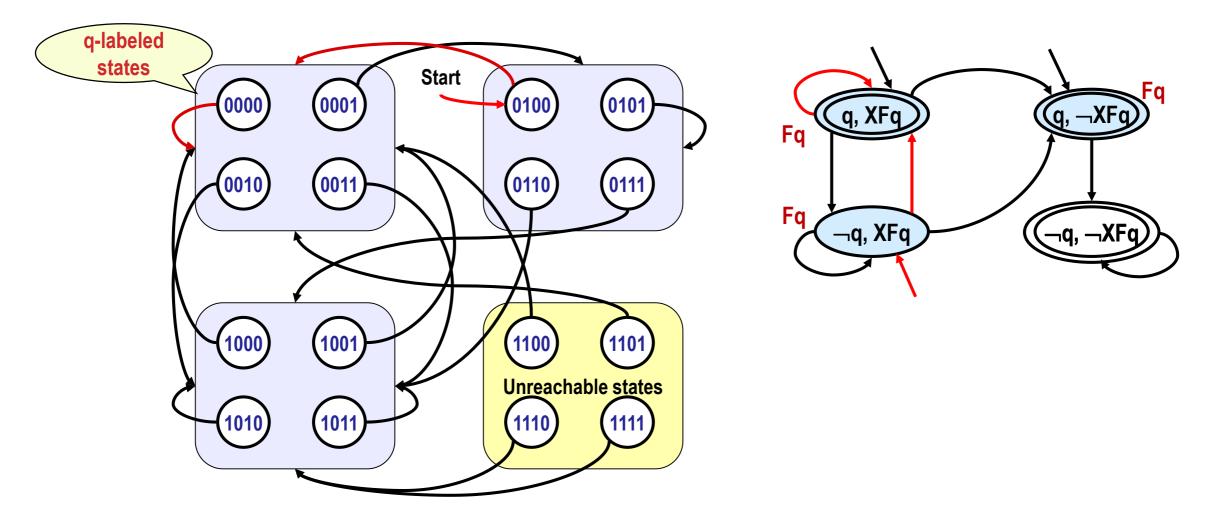
The Büchi Automaton

Our property: Fq where $q = \neg g_1 \land \neg g_2$



- The self loop in the state labeled {--q, XFq} is problematic
 - It allows the satisfaction of q to be postponed forever, in which case Fq does not hold
- By defining the remaining three states as *accept* states, we force the accepting runs to come out of the state labeled {---q, XFq}
 - Recall that the Büchi acceptance criterion states that accept states must be visited infinitely often.

Is the product non-empty?



The common run is shown in red. Product is non-empty. Conclusion: $TS(DUT) \models G(g1 \lor g2)$ is not true. The counterexample is the run in red.

Computational facts

- If a LTL property has k sub-formulas, then the number of states in its automaton may have O(2^k) states
 - Decomposing the property into a conjunction of smaller properties helps in containing the size of this automaton
 - It also helps the FPV tool to prune away parts of the implementation before making the emptiness check
- LTL model checking is PSPACE-complete, but linear in the size of the implementation
 - However, the main bottleneck is in the size of the implementation, which is why we use succinct representations.

"Elementary" Sets for φ

- For an LTL-property φ , the <u>set closure(φ)</u> consists of:
 - All sub-formulas ψ of φ and their negation $\neg \psi$.

The set $B \subseteq closure(\varphi)$ is elementary if:

- 1. B is logically consistent if for all $\varphi_1 \land \varphi_2$, $\psi \in \text{closure}(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \implies \neg \psi \notin B$
 - true \in closure(φ) \Longrightarrow true \in *B*
- 2. B is locally consistent if for all $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:
 - $\varphi_2 \in B \Longrightarrow \varphi_1 \cup \varphi_2 \in B$
 - $\varphi_1 \cup \varphi_2 \in B$ and $\varphi_2 \notin B \Longrightarrow \varphi_1 \in B$
- 3. B is maximal for all $\psi \in \text{closure}(\varphi)$:
 - $\psi \notin B \Longrightarrow \neg \psi \in B$

The GNBA for the LTL-property φ

- A Generalized NBA has multiple sets of accept states, F₁, ..., F_k each of which must be visited infinitely often in an accepting run
- For the LTL-property φ , let $\mathcal{G}_{\varphi} = (Q, 2^{AP}, \delta, Q_0, \mathcal{F})$, where
 - Q is the set of elementary sets of formulas $B \subseteq closure(\varphi)$.
 - $Q_0 = \{ B \in Q \mid \varphi \in B \}$
 - $\mathcal{F} = \{ \{ B \in \mathbb{Q} \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \text{closure}(\varphi) \}$
 - The transition relation δ : Q x $2^{AP} \rightarrow Q$ is given by:
 - δ (B, B \cap *AP*) is the set of all elementary sets of formulas B' satisfying:
 - For every X $oldsymbol{\psi}\in {\sf closure}(arphi)$:

$$X\psi \in B \Leftrightarrow \psi \in B'$$

AND

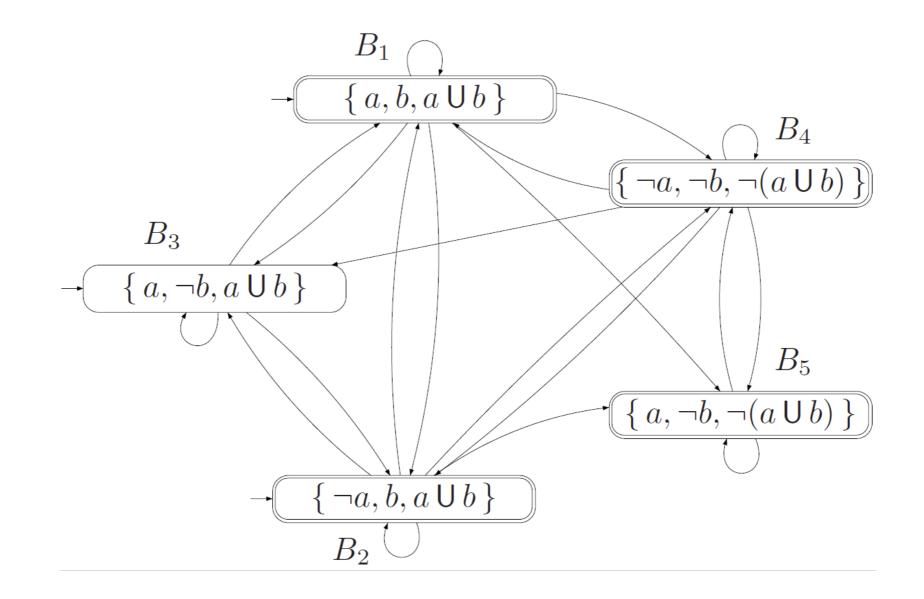
• For every $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

 $\varphi_1 \cup \varphi_2 \in B \iff (\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in B'))$

GNBA for φ = Oa



GNBA for φ = a U b



Emptiness Check

- Emptiness check for a NFA is to find whether any accepting run exists
 - Can be decided by finding whether any accept state is reachable
 - We can do this using the symbolic reachability methods discussed earlier
- Emptiness check for a NBA is to find whether any accepting run exists using the Büchi acceptance criterion
 - Can be decided by finding whether any strongly connected component containing one or more accept states is reachable
 - Once we find the states in strongly connected components with accept states, we can use the symbolic reachability methods to find whether such components are reachable from the initial states
 - How to find strongly connected components using symbolic search?

Exercises

1. Let $AP = \{a\}$ and $\phi = (a \land O a) \cup \neg a$ an LTL formula over AP

(i) Compute all elementary sets with respect to φ . (*Hint: There are five elementary sets*)

(ii) Construct the generalized Büchi automaton (GNBA) G_{ϕ} such that $\mathcal{L}_{\omega}(G_{\phi}) = Words(\phi)$

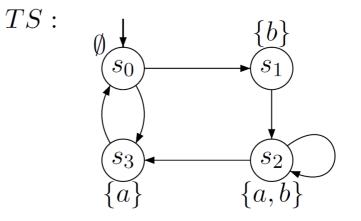
2. We consider the LTL formula:

 $\varphi = G(a \Rightarrow (\neg b \ U \ (a \land b)))$

over the set $AP = \{a, b\}$ of atomic propositions and want to check $TS \models \varphi$ with respect to the transition system on the right.

- (a) Construct a NBA, $A_{\neg\varphi}$, for the negation of φ . You may do this intuitively. (*Hint: Four states suffice*)
- (b) Construct $TS \otimes A_{\neg \varphi}$
- (c) Show how the product can be analyzed to determine whether $TS \models \varphi$

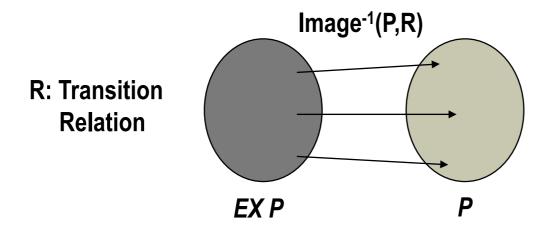
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



CTL Model Checking

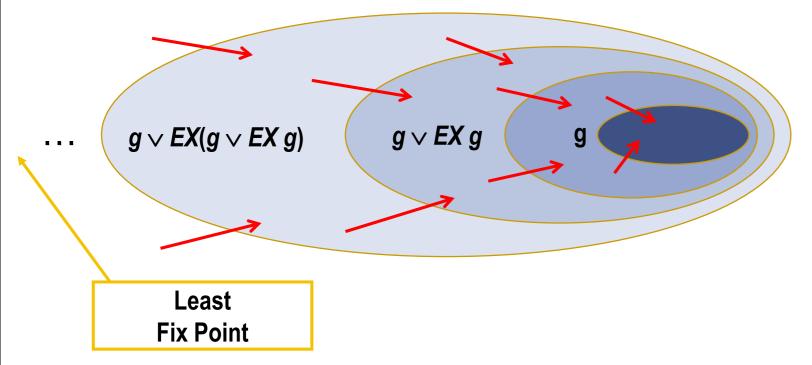
- Need only to show methodology for EX, EU, EG.
- Other modalities can be expressed in terms of EX, EU, EG.
 - AFp = ¬EG ¬p
 - AGp = ¬EF ¬p
 - A(p U q) = ¬E[¬q U (¬p ∧ ¬q)] ∧ ¬EG ¬q

Example: EX p



 $\mathsf{EXp} = \{ v \mid \exists v' (v, v') \in \mathsf{R} \land p \in \mathcal{L}(v') \}$

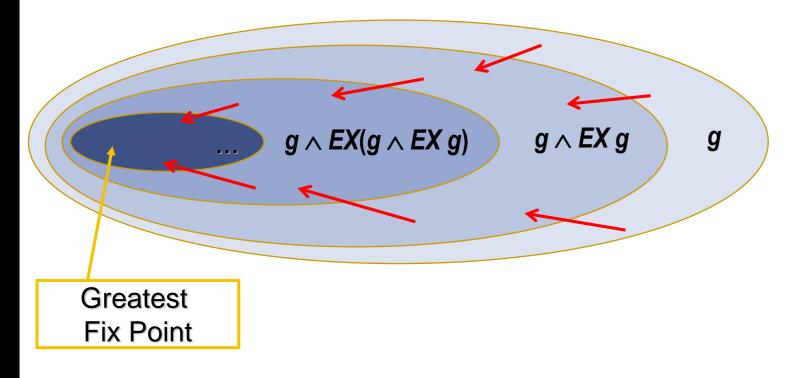
Example: EF g



Given a model M = \langle AP, S, S0, R, L \rangle and S_a the sets of states satisfying g in M

procedure CheckEF (S_g) Q := emptyset; Q' := S_g; while Q \neq Q' do Q := Q'; Q' := Q \cup { s | \exists s' [R(s,s') \land Q(s')] } end while S_f := Q ; return(S_f)

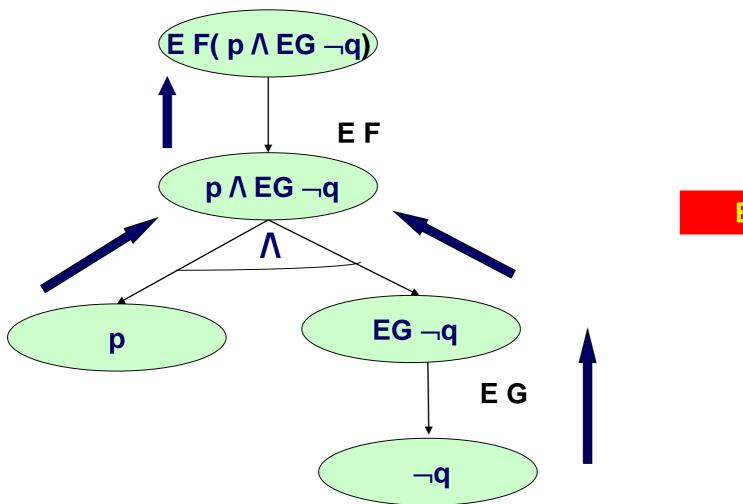
EG g is calculated as



Given a model M = \langle AP, S, S0, R, L \rangle and S_q the sets of states satisfying g in M

procedure CheckEG (S_g) Q := S ; Q' := Sg ;while $Q \neq Q'$ do Q := Q'; $Q' := Q \cap \{ s \mid \exists s' [R(s,s') \land Q(s')] \}$ end while $S_f := Q ; return(S_f)$

Checking Nested Formulas



Bottom Up

Checking Nested formulas

