
Model Checking

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Formal Property Verification

• What is formal property verification?

• Verification of formal properties?

• Formal methods for property verification?

• Both are important requirements

• Broad Classification

• Dynamic property verification (DPV)

• Static/Formal property verification (FPV)

2

Dynamic Property Verification (DPV)

3

Formal Property Verification (FPV)

4

Temporal Logics (Timed /

Untimed, Linear Time /

Branching Time): LTL, CTL

Early Languages: Forspec

(Intel), Sugar (IBM), Open Vera

Assertions (Synopsys)

Current IEEE Standards:

SystemVerilog Assertions

(SVA),

Property Specification

Language (PSL)

Formal Property Verification

The formal method is called “Model Checking”

• The algorithm has two inputs

• A finite state transition system (FSM) representing the implementation

• A formal property representing the specification

• The algorithm checks whether the FSM “models” the property

• This is an exhaustive search of the FSM to see whether it has any path / state that refutes the

property.

5

A transition system TS is a tuple (S,Act,→, I ,AP,L)

where

• S is a set of states

• Act is a set of actions

• → ⊆ S × Act× S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Transition Systems and Kripke Structures

6

A Kripke Structure TS is a tuple (S, →, I ,AP, L)

where

• S is a set of states (inputs are part of the state)

• → ⊆ S × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

→ is a total relation, that is, every state has a next

state (could be itself)

S is finite

In this discussion we shall use the notion of Kripke structures

XOR

OR

NOT

r

x y

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

A simple hardware circuit with Input variable x, Output variable y, and Register r

Output function ¬(x ⊕r) and register evaluation function x∨r

Modeling Sequential Circuits as Kripke Structures

7

Consider two possible state-labelings:

• Let AP = { x, y, r }

– L ((x = 0, r = 1)) = { r } and L ((x = 1, r = 1)) = { x, r, y }

– L ((x = 0, r = 0)) = { y } and L ((x = 1, r = 0)) = { x }

– property e.g., “once the register is one, it remains one”

• Let AP' = { x, y } – the register evaluations are now “ invisible”

– L ((x = 0, r = 1)) = ∅ and L ((x = 1, r = 1)) = { x, y }

– L ((x = 0, r = 0)) = { y } and L ((x = 1, r = 0)) = { x }

– property e.g., “ the output bit y is set infinitely often”

Atomic Propositions

8

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

{y} {x}

{ }
{x y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

Automata over Infinite Words

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

{y} {x}

{r}
{x r y}

x=0 r=0

x=0 r=1

x=1 r=0

x=1 r=1

• A run of this state machine is an infinite sequence of

states.

• If we observe only the state labels, then each state

is viewed as a combination of labels (note that two

states can have same labels)

Runs of the transition system:

 = { { }, {x}, {y}, {r}, {x y}, {x r}, {r y}, {x r y} } = 2AP

Each run of the system belongs to (2AP) that is, the

set of infinite words over

Runs(TS) (2AP)

Runs of the formal property:

Linear time properties are also defined over = 2AP

Each run in (2AP) either satisfies a given formal

property or is a counterexample

Runs() (2AP)

TS ⊨ (read as TS models) iff Runs(TS) Runs()

Model Checking Linear Time Properties

1
0

• Linear Temporal Logic (LTL) captures an expressive subset of

Omega Regular Languages

• SVA is derived from LTL

• Given a LTL property, , to determine whether TS ⊨ we do

the following:

• Since TS ⊨ iff Runs(TS) Runs(), it follows that

Runs(TS) [(2AP) Runs()] =

Runs()

Runs(TS)

(2AP)

• We create an automaton, B , which accepts runs satisfying , that is, runs in (2AP) Runs()

• We compute the product of TS with B and check whether the product has any accepting run.

• If not then TS |= .

• Otherwise, the accepting run is a counter-example trace.

Nondeterministic Büchi automata

• NFA (and DFA) are incapable of accepting infinite words

• A nondeterministic Büchi automaton (NBA) 𝑨 is a tuple (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states with Q0 ⊆Q a set of initial states

• Σ is an alphabet

• δ : Q ×Σ → 2Q is a transition function

• F ⊆Q is a set of accept (or: final) states

• NBAs are structurally similar to NFAs.

• But they have separate acceptance criteria

• An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input

• A Büchi automaton accepts its infinite length input if at least one of the accept states is visited infinitely

often

1
1

Linear Time Properties can be converted to NBA

1
2

a

b

T

a U b

q

r

Tp

q

r

p U (q U r)

GF(p Xp)

T

p

T

p

T

Here the Büchi acceptance criteria

ensures that p Xp is satisfied

infinitely often.

DFAs and NFAs are equally powerful, and

therefore many algorithms convert a NFA to a DFA

before product construction.

Non-deterministic Büchi automata are strictly

more powerful than deterministic Büchi automata.

Therefore we do not attempt to convert a NBA to a

DBA.

LTL Model Checking – An Overview

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

Negation of property

‘No’ (counter-example)

Product transition system
𝑇𝑆 ⨂𝒜¬𝜑

Transition system TS

Check
𝑇𝑆 ⨂𝒜¬𝜑 ⊨ 𝑃𝑝𝑒𝑟𝑠(𝒜)

System

‘Yes’

Model of system

Büchi automaton 𝒜¬𝜑

Generalised Büchi Automaton 𝒢¬𝜑

Model

Checker

LTL formula 𝜑

A persistence

property for an NBA

𝒜 is

FG (“no final state”)

Our running example: Priority Arbiter

1
4

Design-under-test (DUT)

Specification: Formal Property

• One of the grant lines is always asserted

• In Linear Temporal Logic: G(g1 g2)

r1

r2

g1

g2

We wish to check whether: TS(DUT) ⊨ G(g1 g2)

The Kripke Structure: TS(DUT)

1
5

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

Transition Relation:

g1 r1

g2 r1 r2 g1

Initial State:

r1=0, r2=0, g1=0, g2=1

PS
g1g2

I/P
r1r2

NS
g1g2

Next
I/P

00

00

00

00

01

01

01

01

10

10

10

10

11

11

11

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

10

00

01

10

10

00

00

10

10

00

00

10

10

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

xx

r1

r2

g1

g2
This is only for demonstration !!

We will never create this explicitly, but encode it in SAT / BDD

Now we handle the specification

Our property: = G[g1 g2]

• Either of the grant lines is always active

We will create the automaton, A, for

• = F[g1 g2]

• Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

1
6

Intuitive steps towards creating the automaton for the property

• Let us consider our property F(g1 g2) // Eventually q is true

• Using q as a short form for g1 g2 we can rewrite it as:

Fq = q XFq // Either q is true now or Fq is true in the next state

• Therefore we can classify the states in a run into the following types:

• States that satisfy q

• States that do not satisfy q but satisfy XFq

• States that do not satisfy q and do not satisfy XFq

• The first two types are labeled by Fq

1
7

The automaton for our property

1
8

Our property: Fq where q = g1 g2

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

• States that satisfy q and states that do not satisfy q

but satisfy XFq are labeled with Fq

• We add the following edges:

• From states satisfying XFq to states labeled with Fq

• From states satisfying XFq to states satisfying q

• But the self loop in the state labeled {q, XFq} is

problematic

• It allows the satisfaction of q to be postponed

forever, in which case Fq does not hold

The Büchi Automaton

1
9

Our property: Fq where q = g1 g2

• The self loop in the state labeled {q, XFq} is

problematic

• It allows the satisfaction of q to be postponed

forever, in which case Fq does not hold

• By defining the remaining three states as accept

states, we force the accepting runs to come out of the

state labeled {q, XFq}

• Recall that the Büchi acceptance criterion states

that accept states must be visited infinitely often.

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq

q, XFq q, XFq

q, XFq

Is the product non-empty?

2
0

The common run is shown in red. Product is non-empty.

Conclusion: TS(DUT) ⊨ G(g1 g2) is not true. The counterexample is the run in red.

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

Unreachable states

1100 1101

1110 1111

Start

q-labeled

states

q, XFq q, XFq

q, XFq q, XFq

Fq

Fq

Fq
q, XFq q, XFq

q, XFq

Computational facts

• If a LTL property has k sub-formulas, then the number of states in its automaton may have O(2k) states

• Decomposing the property into a conjunction of smaller properties helps in containing the size of this

automaton

• It also helps the FPV tool to prune away parts of the implementation before making the emptiness check

• LTL model checking is PSPACE-complete, but linear in the size of the implementation

• However, the main bottleneck is in the size of the implementation, which is why we use succinct

representations.

2
1

“Elementary” Sets for 𝜑

• For an LTL-property 𝜑, the set closure(𝜑) consists of:

• All sub-formulas 𝝍 of 𝜑 and their negation ¬𝝍.

The set B⊆ closure(𝜑) is elementary if:

1. B is logically consistent - if for all 𝜑1 ∧ 𝜑2 , 𝝍 ∈ closure(𝜑):

• 𝜑1 ∧ 𝜑2 ∈ 𝑩 ⟺ 𝜑1 ∈ 𝑩 and 𝜑2 ∈ 𝑩

• 𝝍 ∈ 𝑩 ⟹ ¬𝝍 ∉ 𝑩

• true ∈ closure(𝜑) ⟹ true ∈ 𝑩

2. B is locally consistent – if for all 𝜑1 U 𝜑2 ∈ closure(𝜑):

• 𝜑2 ∈ 𝑩⟹ 𝜑1 U 𝜑2 ∈ 𝑩

• 𝜑1 U 𝜑2 ∈ 𝑩 and 𝜑2 ∉ 𝑩⟹ 𝜑1 ∈ 𝑩

3. B is maximal – for all 𝝍 ∈ closure(𝜑):

• 𝝍 ∉ 𝑩⟹ ¬𝝍 ∈ 𝑩

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

The GNBA for the LTL-property 𝜑

• A Generalized NBA has multiple sets of accept states, F1, …, Fk each of which must be visited infinitely often in
an accepting run

• For the LTL-property 𝜑, let 𝓖𝝋 = (Q, 2AP, 𝜹, Q0, 𝓕), where

• Q is the set of elementary sets of formulas B ⊆ closure(𝜑).

• Q0 = { B ∈ Q | 𝜑 ∈ 𝑩}

• 𝓕 = { { B ∈ Q | 𝜑1 U 𝜑2 ∉ 𝑩 or 𝜑2 ∈ 𝑩} | 𝜑1 U 𝜑2 ∈ closure(𝜑) }

• The transition relation 𝜹: Q x 2AP ⟶ Q is given by:

• 𝜹(B, B ∩ 𝑨𝑷) is the set of all elementary sets of formulas B’ satisfying:

• For every X𝝍 ∈ closure(𝜑) :

𝐗𝝍 ∈ 𝑩⟺𝝍 ∈ 𝑩’

AND

• For every 𝜑1 U 𝜑2 ∈ closure(𝜑):

𝜑1 U 𝜑2 ∈ 𝑩 ⟺ (𝜑2 ∈ 𝑩 ∨ 𝜑1 ∈ 𝑩 ∧ 𝜑1 U 𝜑2 ∈ 𝑩
′)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

GNBA for 𝜑 = Oa

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

GNBA for 𝜑 = a U b

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

Emptiness Check

• Emptiness check for a NFA is to find whether any accepting run exists

• Can be decided by finding whether any accept state is reachable

• We can do this using the symbolic reachability methods discussed earlier

• Emptiness check for a NBA is to find whether any accepting run exists using the Büchi acceptance criterion

• Can be decided by finding whether any strongly connected component containing one or more accept

states is reachable

• Once we find the states in strongly connected components with accept states, we can use the symbolic

reachability methods to find whether such components are reachable from the initial states

• How to find strongly connected components using symbolic search?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

Exercises

1.

2.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

1. We consider the LTL formula:

 𝜑 = 𝐺(𝑎 ⇒ (¬𝑏 𝑈 (𝑎 𝑏)))

over the set AP = {a, b} of atomic propositions and want to

check 𝑇𝑆 ⊨ 𝜑 with respect to the transition system on the

right.

(a) Construct a NBA, 𝐴¬𝜑 , for the negation of 𝜑. You may

do this intuitively. (Hint: Four states suffice)

(b) Construct 𝑇𝑆⨂𝐴¬𝜑

(c) Show how the product can be analyzed to determine whether 𝑇𝑆 ⊨ 𝜑

(a) Let AP = { a } and = (a a) U a an LTL formula over AP

(i) Compute all elementary sets with respect to . (Hint: There are five elementary sets)

(ii) Construct the generalized Büchi automaton (GNBA) G such that L(G) = Words()

CTL Model Checking

• Need only to show methodology for EX, EU, EG.

• Other modalities can be expressed in terms of EX, EU, EG.

• AFp = EG p

• AGp = EF p

• A(p U q) = E[q U (p q)] EG q

2
8

Example: EX p

2
9

P

R: Transition

Relation

Image-1(P,R)

EX P

EXp = { v | v (v, v) R p L(v) }

Example: EF g

3
0

gg EX gg EX(g EX g). . .

Least

Fix Point

Given a model M = AP, S, S0, R, L and

Sg the sets of states satisfying g in M

procedure CheckEF (Sg)

Q := emptyset; Q’ := Sg ;

while Q Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’) Q(s’)] }

end while

Sf := Q ; return(Sf)

31

Example: EG g

EG g is calculated as

g EX g gg EX(g EX g)...

Greatest

Fix Point

Given a model M = AP, S, S0, R, L and

Sg the sets of states satisfying g in M

procedure CheckEG (Sg)

Q := S ; Q’ := Sg ;

while Q Q’ do

Q := Q’;

Q’ := Q { s | s' [R(s,s’) Q(s’)] }

end while

Sf := Q ; return(Sf)

32

Checking Nested Formulas

E F(p /\ EG q)

p /\ EG q

E G

EG qp

/\

E F

q

Bottom Up

33

Checking Nested formulas

p state

q state

¬p ۸ ¬q state

¬qEG¬qp۸EG¬qEF(p۸EG¬q)

EF (p ۸ EG ¬q)

